
Variable Objective Large Neighborhood Search:
A practical approach to solve over-constrained problems

Pierre Schaus
UCLouvain, ICTEAM
Place sainte barbe 2,

1348 Louvain-la-Neuve, Belgium
pierre.schaus@uclouvain.be

Abstract—Everyone having used Constraint Programming
(CP) to solve hard combinatorial optimization problems with
a standard exhaustive Branch & Bound Depth First Search
(B&B DFS) has probably experienced scalability issues. In
the 2011 Panel of the Future of CP, one of the identified
challenges was the need to handle large-scale problems. In
this paper, we address the scalability issues of CP when
minimizing a sum objective function. We suggest extending the
Large Neighborhood Search (LNS) framework enabling it with
the possibility of changing dynamically the objective function
along the restarts. The motivation for this extended framework
- called the Variable Objective Large Neighborhood Search
(VO-LNS) - is solving efficiently a real-life over-constrained
timetabling application. Our experiments show that this simple
approach has two main benefits on solving this problem: 1)
a better pruning, boosting the speed of LNS to reach high
quality solutions, 2) a better control to balance or weight the
terms composing the sum objective function, especially in over-
constrained problems.

Keywords-constraint programming; large neighborhood
search; over-constrained problems; sum objective;

I. INTRODUCTION AND MOTIVATION

One of the main weaknesses of CP is its inability to
deal efficiently with (weighted) sums often introduced by
the modeler as the objective function to minimize. As noted
in [20], a lot of optimization problems present this aspect
of minimizing (or maximizing) the (weighted) sum of some
sub-objective variables oi:

z =
∑
i

oi

It is well known that sum constraints in CP generally present
a poor filtering in terms of lower bounds compared to
equivalent Integer Programming (IP) models. Most of the
CP solvers achieve bound-consistency on sum constraints
without any possible communication with other constraints
other than through the domain store (current domain for each
variable). It means that the lower bound of the objective
variable is computed from the sum constraint by considering
minimum values of the sub-objective variables: z =

∑
i oi.

It is often a frustration for people coming from the IP
community to discover the weakness of CP on this aspect
since they are used to model with sum objective function

without necessarily affecting the efficiency of their model.
The difference is that IP relies on a linear programming
(LP) relaxation solved by the simplex algorithm (see [30] for
introduction to IP). In the simplex all the linear constraints
and the linear objective are considered together providing a
generally tighter lower bound than the one offered by CP.
The next example illustrates the weak filtering of CP on sum
objective functions.

Example 1.1: (Inspired from [20]) z = o1 + o2 has to
be minimized while satisfying the constraints o1 = 3x +
2y and o2 = w − 2x − y with Dom(x) = Dom(y) =
[0, 5] and Dom(w) = [5, 10]. The CP filtering will lead to
sub-objective lower bounds o1 = 3 · x + 2 · y = 0 and
o2 = w − 2 · x− y = −10. The objective lower bound will
be z = o1 + o2 = −10. The purpose of this example is
to illustrate that the communication between the constraints
only happens through the domain store. On this example, an
LP solver using the simplex algorithm discovers the lower
bound 5 for z.

As mentioned by van Hoeve in his tutorial [26], many
(most) industrial problems are essentially over-constrained.
Solving efficiently a real over-constrained timetabling ap-
plication introduced in Section III-B is the main motivation
for this work. It is common in those problems to minimize
a sum objective function of the violations.

Over-Constrained Problems: The meta-constraint
framework introduced in [16] associates a cost variable to
each soft constraint to represent its violation. Many soft
global constraints and their filtering algorithms have been
developed over the last decade: the soft all-different [17],
soft global cardinality [28] soft-cumulative [3], etc (see
[27] for more of them). van Hoeve draws this important
conclusion in his chapter dedicated to over-constrained
problems [27]:

Many research challenges remain in this area. Perhaps
the most important one is the issue of aggregating effectively
different soft global constraints. It is likely that a weighted
sum of the associated cost variables is not the most ef-
fective aggregation. Other approaches, such as minimizing
the maximum over all cost variables, or applying a (soft)
balancing constraint to the cost variables, appear to be more

promising. Although not the most effective one in terms of
filtering, minimizing the sum of violations is probably the
most intuitive one and is also the one proposed in [19] and
[11] to solve real over-constrained nurse rostering problems.

The consequence of a weak filtering on lower bounds with
the introduction of sum objective constraints is that a B&B
DFS exploration can quickly get stuck in a small region of
a huge search tree. The early decisions taken in the DFS
exploration have little chance to be reconsidered and only a
small portion of the search space can be explored to discover
good solutions. The answer of Shaw to this problem was
the introduction of the Large Neighborhood Search (LNS)
framework [24].

LNS: The idea of this incomplete method is to combine
the expressiveness of CP and the efficiency of Local Search
(LS): CP is used as the slave technique to explore a (large)
neighborhood around the current best solution in order
to improve it. The neighborhood exploration consists in
exploring a smaller very constrained problem keeping fixed
part of the structure from the current best solution. LNS
has been successfully used to solve large-scale complex
problems such as vehicle routing [1], [24], scheduling [15],
[7] and assignment/bin-packing problems [22], [10].

Contribution: Our contribution is to extend the LNS
framework to improve the filtering when the objective
function to optimize is a (weighted) sum, for instance
resulting from the aggregation of the violations of soft global
constraints. We propose to optimize a few terms of the sum
at a time; changing these terms dynamically along the LNS
restarts (standard LNS with a variable objective function).
We call this extended framework the Variable Objective LNS
(VO-LNS). The benefits of VO-LNS are
• a stronger pruning during the branch and bound;
• a full control on the prioritization among the different

sub-objectives.
This work does not attempt to improve the poor com-

munication of sum constraints with other constraints in the
constraint store as was proposed in [20]. Instead it minimizes
the effect by reducing the number of free terms in the sum
during the branch and bound search.

Related Work: The idea of changing dynamically the
objective function along iterations is not new and has been
successfully applied in various contexts. In continuous op-
timization, the metric and the search direction is changed
dynamically in [2], [4]. The guided local search (GLS)
meta-heuristic [29] uses an objective function augmented by
penalties changing dynamically. The Variable Neighborhood
Search meta-heuristic (VNS) changes the neighborhood dur-
ing search [12], [5]. The motivation of GLS (VNS) is the
recognition that a local optimum with respect to one ob-
jective function (neighborhood) may not be locally optimal
for another objective function (neighborhood). The Adaptive
Large Neighborhood Search (ALNS) heuristic proposed in
[21], [18] extends the LNS heuristic by allowing multiple

relaxation and repair methods to be used within the same
search using weights adjusted dynamically as the search
progresses. The common motivation of GLS, VNS and
ALNS meta-heuristics is to escape from local optima. As
for GLS, we believe that the VO-LNS can also help to
escape from local minima but the main goal of VO-LNS
is to improve the filtering in the context of sum objective
functions to discover better solutions in less time.

Outline: Section II formally recalls the classical LNS
in CP and its parameters. It then introduces the VO-LNS
framework. In Section III the VO-LNS framework is tested
on two different over-constrained problems illustrating the
effectiveness of VO-LNS in terms of time and solution
quality. The first problem is an artificial rostering problem
while the second one is a real-life timetabling problem
occurring in a hospitality school. Section IV discusses the
limitations of VO-LNS. Section V offers some perspectives
and future work we plan to explore with VO-LNS. We
conclude in Section VI.

II. VARIABLE OBJECTIVE LNS

We first recall what LNS is and its parameters. We then
introduce the extended VO-LNS framework.

The initial constrained optimization model has the fol-
lowing form minimizing a variable z resulting from a sum
constraint:

Minimize z = o1 + o2 + . . .+ on

Subject to constraints
(1)

To turn the original CP model into a LNS, the user needs
to provide:
• A relaxation procedure. This procedure (also called

fragment selection) is responsible for defining the
neighborhood. It adds some constraints to the problem
coming from the structure of the current best solution1

while allowing some flexibility for re-optimization.
• A search limit. This limit although optional is respon-

sible to trigger a new restart when it is reached to
avoid spending too much time in the neighborhood
exploration. It can for instance be a time limit, or a
limit on the number of backtracks.

In the extended VO-LNS framework one would state an
optimization model as follows:

Optimize obj = (obj1, obj2, . . . , objm)

Subject to constraints
(2)

The only difference is that several objectives can be stated
rather than only one. Each sub-objective can either be a
minimization or maximization encapsulating one variable
and can be set independently into three different filtering
modes during the B&B search:

1It is quite easy in any modern CP solver to record the current best
solution during the search, for instance through a call-back mechanism.

1) No-Filtering: it means that it is deactivated, having no
impact at all.

2) Weak-Filtering: when a solution is found during the
B&B DFS, the bound of the objective is updated such
that the next found solution is better or equal to the
bound with respect to this objective.

3) Strong-Filtering: when a solution is found during the
B&B DFS, the bound of the objective is updated such
that the next found solution is strictly improving the
bound of this objective.

Example 2.1: Let us consider two variables x1, x2 ∈
[0..2] and the minimization of 2x1 + x2. We assume the
B&B DFS first assigns variable x1 then x2 in decreasing
value order. Three minimization objectives are introduced
obj1 = 2x1, obj2 = x2 and obj3 = 2x1 + x2. We consider
three different configurations for the filtering mode of these
objectives. For each configuration, the solutions discovered
during the B&B DFS are reported in Table I from the first
to the last (optimal) solution. N,W,S denote respectively
No-Filtering, Weak-Filtering and Strong-Filtering modes. As
can be seen, some solutions are not considered when the
filtering mode is stronger. The setting W,W,S was able to
find the same optimal solution with respect to to obj3 as in
setting N,N,S. But the best solution obtained with setting
S,W,S is sub-optimal with respect to obj3 (2 instead of 0).

obj1 obj2 obj3
x1 x2 N N S

2 2 4 2 6
2 1 4 1 5
2 0 4 0 4
1 1 2 1 3
1 0 2 0 2
0 1 0 1 1
0 0 0 0 0

W W S
2 2 4 2 6
2 1 4 1 5
2 0 4 0 4
1 0 2 0 2
0 0 0 0 0

S W S
2 2 4 2 6
1 2 2 2 4
0 2 0 2 2

Table I: Impact of the filtering mode configurations on the
solutions discovered during the B&B DFS.

Note that model (2) is more expressive than model (1).
We can easily state the initial model (1) into an equivalent
VO-LNS formulation with just one sub-objective being the
minimization of the summation of the terms:

Optimize obj = (obj1)

Subject to constraints
(3)

with obj1 = minimize(z = o1 + . . . + on) set into the
Strong-Filtering mode. In VO-LNS we are interested in

dynamically changing the filtering mode of sub-objectives
along the restarts. Our initial model (1) is expressed as
follows:

Optimize obj = (obj1, obj2, ..., objn, objn+1)

Subject to constraints
(4)

with obji = minimize(oi) for all i ∈ [1..n] and objn+1 =
minimize(z = o1 + . . .+ on). Note that we add the original
sum objective as one of the sub-objective. This sub-objective
objn+1 is set into the Strong-Filtering mode such that the
filtering of the B&B DFS is at least as strong as in the
original model.

The next example illustrates why having more than one
variable set into Strong/Weak Filtering mode can trigger
the filtering of the constraints earlier during the B&B DFS,
helping to reduce the search space.

Example 2.2: Assume the minimization of o1 + o2 with
variables o1, o2 ∈ [0..2] involved in two optimization con-
straints2 C1(vars1, o1), C2(vars2, o2). Assume further that
C1 (C2) is only able to filter some values from vars1 (vars2)
when the maximum value of the domain of o1 (o2) is 1.
Three objectives to minimize are introduced: obj1 = o1,
obj2 = o2 and obj3 = o1 + o2, each objective maintains its
own upper bound. We consider two different configurations
for the filtering mode of these objectives. The first one
N,N, S is equivalent to standard minimization of o1 + o2
since the other objectives are deactivated. The second one
S,W, S is a possible setting in the VO-LNS framework. For
both configurations, we report on Table II the worst case
scenario with respect to the decreasing of the upper bounds
of the objectives along the B&B DFS (we assume 0 lower
bounds). For the first setting, some filtering is triggered only
when the upper bound on o1 + o2 reaches 1 since the sum
constraint can set neither the maximum of o1 nor o2 to 1
when the upper bound on o1 + o2 is greater than 1. In the
second setting, the filtering on C1 already happens after the
first solution has been discovered during the B&B DFS since
obj1 upper bound is immediately set to 1.

obj1 obj2 obj3 C1 C2

N N S filtering?
2 2 4 No No
2 2 3 No No
2 2 2 No No
1 1 1 Yes Yes
S W S filtering?
2 2 4 No No
1 2 3 Yes No

Table II: Impact of the filtering mode configurations on the
objective upper bounds update and the filtering during the
search.

With this set of sub-objectives in problem formulation
(4), the relaxation procedure of VO-LNS has one more

2for instance softgcc constraints [28], [23].

responsibility, which is changing dynamically the filtering
mode of the sub-objectives for the next restart. Here is for
instance one strategy we experimented and found successful
on over-constrained problems:
• Never change objn+1 i.e. keep it its Strong-Filtering

filtering mode.
• Select the worst objective objk ∈ {obj1, . . . , objn}

in the current best solution (the one with maxi-
mum value in case of a minimization). Set objk into
Strong-Filtering mode. Set the other ones either into
Weak-Filtering or No-Filtering mode.

• Apply a relaxation procedure dependent from the se-
lected objective objk to give it the largest chance of
success to improve during next restart.

Selecting preferably the worst objectives at each restart
guides the search toward balanced solutions with respect to
each of the terms, which is generally a desirable property
when solving over-constrained problems.

III. EXPERIMENTS

We propose to solve two over-constrained problems to
compare the performances of VO-LNS to classical LNS. The
first problem tested in Section III-A is an artificial rostering
problem that anyone interested can easily reproduce without
much implementation effort. The second problem experi-
mented in Section III-B is a real timetabling application
that motivated the development of VO-LNS. All experiments
were conducted with the OscaR open-source solver [14].

A. Artificial Rostering Problem

This problem is an artificial over-constrained rostering
problem but presenting a similar structure to real ones.
A 15 × 15 matrix of variables is defined with vertical
and horizontal cardinality constraints. The domain of each
variable is a set of values obtained by sampling randomly 5
times numbers in [1..15]. One global cardinality constraint
is added on each line and each column requiring that every
value v ∈ [1..15] should appear exactly once. The way the
domains are generated do not guarantee that the cardinality
requirements are all feasible together. This problem might be
over-constrained. Each cardinality constraint is relaxed into
the soft equivalent [28] introducing 30 violation variables3.
We denote zi (i ∈ [1..30]) the violation variable of rows
and columns and ztot =

∑
i∈[1..30] zi, the total violation of

the problem. The objective is to minimize ztot and ideally
the violations zi’s should be balanced as much as possible.
Three different settings (relaxation procedures and objective
configurations) are experimented.
• A: Randomly relax 10% of the variables. The only

objective is the minimization of the variable ztot set
into the Strong-Filtering filtering mode

3We use the value based violation [28] and the filtering algorithm
introduced in [23]

• B: Select the column or row with the largest violation
in the current best solution and relax the variables of
this row or column. Also relax randomly 10% of the
variables as in A. The selected row or column becomes
tabu during 2+k restarts where k is a random number
taken on [0..2] to ensure diversification. This tabu
procedure is used to avoid over-selecting the same row
or column along restarts. As in A, the only objective is
the minimization of the variable ztot set into the Strong-
Filtering mode.

• C: The relaxation is the same as in B. All the min-
imization objectives are added to the model obj =
(obj1, . . . , obj30, objtot) with obji = minimize(zi) and
objtot = minimize(ztot). Objective objtot is set into
the Strong-Filtering filtering mode and remains in that
mode. The objective corresponding to the relaxed row
or column is set into the Strong-Filtering mode while
others (except objtot) are set into the Weak-Filtering
mode.

Note that settings A and B are both classical LNS (only
the relaxation procedure differs) while setting C uses the
VO-LNS framework since the filtering mode of objectives
is changed dynamically during restarts.

Figure 1 depicts the evolution of ztot along 400 restarts
with a 50 backtrack limit using settings A, B and C.

Let us first compare A and B who only differ in the
relaxation procedure. The more sophisticated relaxation used
in B allows a faster decrease of the objective function during
the first 50 restarts. Then A is decreasing faster than B and
reaches a better objective value at the end of the 400 restarts.

C is using the same relaxation as B but differs in the
objective functions. We can see that C is the clear winner
over the two other methods decreasing much faster and
reaching the best objective function at the end. This is
because the filtering of the objectives is much stronger and
aggressive in C: at each restart two sub-objectives are set
into Strong-Filtering and the other ones are set into Weak-
Filtering mode.

Since we are also interested into the distribution of the
violations we propose to analyze the standard deviation of
the violations z1, . . . , z30. Ten instances were generated and
solved using settings A, B and C. The results are given on
Table III. Surprisingly the idea of using an LNS relaxation
focusing on a sub-objective (setting B) obtains worse results
than the random relaxation with standard LNS (setting
A). However, VO-LNS (setting C) strongly reinforces this
strategy by offering a more aggressive filtering of the sub-
objective functions. One can see that C is consistently the
best approach to minimize the total violation ztot. It also
seems to be the best approach to obtain balanced violations.
It fails to have the smallest standard deviation only in two
instances.

0 100 200 300 400

50
10

0
20

0
30

0
40

0

LNS restarts

To
ta

l V
io

la
tio

n

A
B
C

Figure 1: Evolution of the total violation along restarts
obtained on an artificial rostering instance with LNS settings
A, B and C

ztot standard deviation
A B C A B C
78 84 66 1,30 1,71 1,42
70 104 60 1,18 1,48 1,29
68 74 60 1,72 1,63 1,05
80 100 66 1,69 1,69 1,52
78 100 56 1,75 1,69 1,17
68 108 54 1,14 2,13 0,96
74 106 66 1,46 1,87 1,21
74 108 62 1,72 1,85 1,23
70 114 60 1,18 2,12 1,05
82 126 66 1,44 2,12 1,32

Table III: Total violation and standard deviation obtained on
10 artificial rostering instances with LNS settings A, B and
C

B. Real-life over-constrained timetabling problems

This timetabling problem comes from a hospitality school
planning the course activities for its students for the next
semester. Solving efficiently this over-constrained problem
was the original motivation for this work.

Students are divided into n groups. Each group must be
scheduled two activities every week (one morning and one
afternoon activity) during m weeks4. There are thus n×m×2
decision variables that must be assigned an activity. There
are p+1 different activities with activity p representing the
empty slot (in our instance n = 15, m = 20 and p = 16).
A table view of the decision variables x is given in Table
IV. xAM

i,j ∈ [0..p] (xPM
i,j ∈ [0..p]) is the morning (afternoon)

activity assigned to group i in week j.
Before describing the constraints, we introduce some

notations to extract slices and rows of variables out of table
x.

Notations: We represent by xAM
i,∗ the vector of AM

variables related to group i: (xAM
i,1 , xAM

i,2 , . . . , xAM
i,m). Simi-

4A group receives the same morning (afternoon) activity all the days of
the week.

Week1 Weekj Weekm
xAM
1,1 xPM

1,1 . . . xAM
1,j xPM

1,j . . . xAM
1,m xPM

1,m

. .

xAM
i,1 xPM

i,1 . . . xAM
i,j xPM

i,j . . . xAM
i,m xPM

i,m

. .

xAM
n,1 xPM

n,1 . . . xAM
n,j xPM

n,j . . . xAM
n,m xPM

n,m

Table IV: Table x of the decision variables of the hospitality
school timetabling problem.

larly xPM
i,∗ is the vector of PM variables related to group

i and x∗i,∗ the vector of AM and PM variables related to
group i: (xAM

i,1 , xPM
i,1 , xAM

i,2 , xPM
i,2 , . . . , xAM

i,m , xPM
i,m). We also

define xAM
∗,j the vector of AM variables related to week j:

(xAM
1,j , xAM

2,j ,. . .,xAM
n,j). Vectors xPM

∗,j and x∗∗,j are defined
similarly.

Constraints: The horizontal constraints (specific to a
group) are:
• Each activity can be scheduled a minimum and max-

imum number of times over the schedule of a group.
This constraint is modeled using one global cardinality
constraint (GCC) over each vector x∗i,∗.

• Some activities if scheduled, must be scheduled both
in the morning and in the afternoon of the week. These
constraints are handled using table constraints.

• Some activities if scheduled must be scheduled in the
morning and in the afternoon during two consecutive
weeks. These constraints are also handled using table
constraints every two weeks.

• Some theoretical courses are pre-assigned.
The vertical constraints related to a week are:
• On a given week, each activity can appear a minimum

and maximum number of times over the morning slots
of the n groups. This constraint is modeled with one
GCC over each vector xAM

∗,j . We have the same kind
of constraint over the afternoon slots xPM

∗,j . We denote
the constraint on column j AM (PM) slots by gccAM

j

(gccPM
j).

• Some activities must be scheduled every week in at
least one group. This constraint is handled with one
GCC on variables x∗∗,j every week j, with minimum
occurrences set to 1 on activities that must be scheduled
at least once. We denote the constraint on column j by
gccWeek

j .
The problem instance5 that needs to be solved appears

to be over-constrained. Every vertical cardinality constraint
gccAM

j , gccPM
j , gccWeek

j , ∀j ∈ [1..m] is turned into a soft
cardinality constraint and their respective violation variables
are zAM

j , zPM
j , zWeek

j .
The VO-LNS setting is similar to setting C used on

the previous artificial rostering problem. One minimization

5Available upon request to the author.

objective in introduced for each violation variable objAM
j ,

objPM
j , objWeek

j . One objective objtot = minimize(ztot =∑
j(z

AM
j + zPM

j + zWeek
j)) is also added. Objective objtot

is set into the Strong-Filtering filtering mode and remains
in that mode. Others (except objtot) are set initially in the
No-Filtering mode.

We designed a LNS relaxation procedure to favor the
chance of improvement along restarts on this problem. On
even restart numbers, two weeks are randomly relaxed.
On odd restart numbers two groups are randomly relaxed.
On every restart, the objective with the worst violation is
selected. The variables appearing in the week corresponding
to selected objective variable are also relaxed. The selected
objective is set tabu for a random number of iterations
between 3 and 5. We used 1000 LNS restarts in our
experiments; each with a limit of 100 backtracks.

Figure 2 depicts the evolution of the total violation ztot
with standard LNS and with VO-LNS also setting the
selected nontabu objective into Strong-Filtering mode while
others (except objtot) are set into Weak-Filtering mode.
Table V reports the final violations obtained at the end of
the 1000 restarts and the time required to reach it.

As can be seen on Figure 2, the total violation decreases
much faster along the iterations with VO-LNS compared
to standard LNS. Also the final objective is better and
the different morning and afternoon violations are more
balanced. Interestingly the time required to achieve the 1000
restarts is much shorter for VO-LNS (44 vs. 155 seconds).
This is because most of the restarts with standard LNS were
caused by the limit of 100 backtracks while for VO-LNS, the
search tree exploration was exhausted in 894/1000 restarts.
This demonstrates the stronger filtering obtained with VO-
LNS over standard LNS. Based on these results, we believe
that VO-LNS can offer an improved any-time behavior over
classical LNS on this type of problems.

0 200 400 600 800 1000

10
0

20
0

30
0

40
0

50
0

LNS restarts

To
ta

l V
io

la
tio

n

VO−LNS
LNS

Figure 2: Evolution of the total violation along restarts
obtained on the real-life timetabling problem with LNS and
with VO-LNS.

Tot AM PM Week N time(s)
LNS 93 53 38 2 18 155

VO-LNS 82 40 39 3 894 44

Table V: Some indicators comparing LNS and VO-LNS
on the real-life timetabling problem. Columns represent
namely the final total violation

∑
j(z

AM
j + zPM

j + zWeek
j),

total violation on AM columns
∑

j z
AM
j , total violation

on PM columns
∑

j z
PM
j , total week violation

∑
j z

Week
j ,

the number of exhausted LNS restart and the total time in
seconds.

We have tested the approach on 5 more instances with a
timeout of 300 seconds6 for each run. Table VI gives the
minimum, average, and maximum violation over 10 runs
for each instance. As can be seen, only for one instance
(instance 4), it is not clear whether the VO-LNS allows to
improve the violation or not. For the other four instances,
VO-LNS outperforms clearly standard LNS.

VO-LNS LNS
min avg max min avg max

99 99,5 100 103 105 107
122 127,6 132 121 137,8 149
116 116,7 119 156 166,8 185
136 144,7 159 140 143,1 147
82 85,6 94 94 101,4 112

Table VI: Minimum, average, and maximum violation over
10 runs for each instance.

IV. LIMITATIONS OF VO-LNS

The VO-LNS approach is not suited for every problem.
In particular when the tension between the sub objectives is
too important, the VO-LNS may fail to help and even worse,
it could prevent the LNS to escape from local optima. One
such example is the large-scale power restoration problem
[25] combining routing and power outage objectives. On
this kind of problem with high tension between the sub
objectives, a multi-stage decomposition approach seems
more appropriate.

However, there are problems where the tension between
the sub-objectives is not that strong. On over-constrained
problems (such as the one treated in Section III-B), minimiz-
ing the violation of one constraint may only have limited,
local, impact. On this type of problems, the VO-LNS ap-
proach can be effective as demonstrated in the experimental
section.

The idea of focusing LNS relaxations to sub-objectives is
the key idea that actually underlies most LNS neighborhoods

6This timeout was chosen such that the objective does not improve
anymore for both LNS and VO-LNS.

(such as the one used in the real-life over constrained prob-
lem of Section III-B). Our experiments have demonstrated
that the VO-LNS can reinforce this strategy by offering a
more aggressive filtering of the sub-objective functions. To
some extend, VO-LNS can be seen as part of the definition
of the neighborhood helping it to focus on different selected
sub-objectives at each restart.

V. FUTURE WORK AND PERSPECTIVES

Some perspectives and future work we plan to do to
extend the VO-LNS framework are given below.

Objective selection strategies: We have experimented a
tabu meta-heuristic on top of the VO-LNS for the objective
selection. Many more meta-heuristics could be developed
such as Machine Learning (ML) based approaches to dis-
cover combinations of objectives that should be set together
into Strong/Weak tightening mode. ML approaches on top
of LNS have already been used in [7], [8], [9]. We also plan
to study the impact of the order in which the sub-objectives
are considered. We would like to imagine general strategy
for VO-LNS.

Over-constrained optimization problems: We believe
that VO-LNS is particularly well suited for this kind of
problems. The VO-LNS could first focus on the feasibility
aspect of the problem by minimizing the violations before
focusing on the optimization without degrading the viola-
tions objectives.

Earliness, Tardiness problems: VO-LNS could be used
to minimize violations in just-in-time scheduling prob-
lems. Those problems are hard to solve with CP because
of the weak propagation when aggregating all the earli-
ness/tardiness costs. Focusing at each restart on the objective
tardiness of a restricted number of activities may improve
the filtering. Combining it with better propagation as in [6]
and [13] may give interesting results.

VI. CONCLUSION

This work introduced the VO-LNS framework allowing
the optimization of several objectives at once. At each
restart the filtering behavior of the different objectives can
be changed between { Weak,Strong,No }-Filtering. This
simple and pragmatic method seems particularly well suited
to optimize over-constrained problems where we generally
minimize the sum of the violations. Our experiments showed
that the filtering improvement of the objective introduced
with VO-LNS allowed to reach high quality solutions in a
much smaller number of restarts and less time than classical
LNS. VO-LNS also offers a better control to balance the
violation of the importance of the sub-objectives to optimize.
One of the main advantage of VO-LNS is that it doesn’t
require changing much the CP solvers already offering
standard LNS.

REFERENCES

[1] R. Bent and P.V. Hentenryck. A two-stage hybrid algorithm
for pickup and delivery vehicle routing problems with time
windows. Computers & Operations Research, 33(4):875–893,
2006.

[2] W.C. Davidon. Variable metric method for minimization.
Argonne National Laboratory, 1959.

[3] A. De Clercq, T. Petit, N. Beldiceanu, and N. Jussien. A
soft constraint for cumulative problems with over-loads of
resource. In Principles and Practice of Constraint Program-
ming, 2011.

[4] R. Fletcher and M.J.D. Powell. A rapidly convergent descent
method for minimization. The Computer Journal, 6(2):163–
168, 1963.

[5] P. Hansen, N. Mladenović, and J.A. Moreno Pérez. Variable
neighbourhood search: methods and applications. Annals of
Operations Research, 175(1):367–407, 2010.

[6] András Kovács and J Christopher Beck. A global constraint
for total weighted completion time for unary resources. Con-
straints, 16(1):100–123, 2011.

[7] P. Laborie and D. Godard. Self-adapting large neighborhood
search: Application to single-mode scheduling problems. Pro-
ceedings MISTA-07, Paris, pages 276–284, 2007.

[8] Jean-Baptiste Mairy, Yves Deville, and Pascal Van Henten-
ryck. Reinforced adaptive large neighborhood search. In 8th
Workshop on Local Search techniques in Constraint Satisfac-
tion (LSCS 2011). A Satellite Workshop of CP, Perugia, Italy,
2011.

[9] Jean-Baptiste Mairy, Pierre Schaus, and Yves Deville.
Generic adaptive heuristics for large neighborhood search. In
Seventh International Workshop on Local Search Techniques
in Constraint Satisfaction (LSCS2010). A Satellite Workshop
of CP, 2010.

[10] D. Mehta, B. OSullivan, and H. Simonis. Comparing solution
methods for the machine reassignment problem. In Principles
and Practice of Constraint Programming, pages 782–797.
Springer, 2012.

[11] J.P. Métivier, P. Boizumault, and S. Loudni. Solving nurse
rostering problems using soft global constraints. Principles
and Practice of Constraint Programming, pages 73–87, 2009.

[12] N. Mladenović and P. Hansen. Variable neighborhood search.
Computers & Operations Research, 24(11):1097–1100, 1997.

[13] Jean-Noël Monette, Yves Deville, and Pascal Van Henten-
ryck. Just-in-time scheduling with constraint programming.
In The 19th International Conference on Automated Planning
and Scheduling, Tessaloniki, Greece, 19/09/2009 2009.

[14] OscaR Team. OscaR: Scala in OR, 2012. Available from
https://bitbucket.org/oscarlib/oscar.

[15] D. Pacino and P. Van Hentenryck. Large neighborhood
search and adaptive randomized decompositions for flexible
jobshop scheduling. In Proceedings of the Twenty-Second in-
ternational joint conference on Artificial Intelligence-Volume
Volume Three, pages 1997–2002. AAAI Press, 2011.

[16] T. Petit, J.C. Régin, and C. Bessière. Meta-constraints on
violations for over constrained problems. In Tools with
Artificial Intelligence, 2000. ICTAI 2000. Proceedings. 12th
IEEE International Conference on, pages 358–365. IEEE,
2000.

[17] T. Petit, J.C. Régin, and C. Bessière. Specific filtering
algorithms for over-constrained problems. In Principles
and Practice of Constraint Programming, pages 451–463.
Springer, 2001.

[18] D. Pisinger and S. Ropke. Large neighborhood search.
Handbook of metaheuristics, pages 399–419, 2010.

[19] J.C. Régin. Global constraints and filtering algorithms. Con-
straint and Integer Programming–Towards a Unified Method-
ology, pages 89–129, 2003.

[20] J.C. Régin and T. Petit. The objective sum constraint. Integra-
tion of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 190–195, 2011.

[21] S. Ropke and D. Pisinger. An adaptive large neighborhood
search heuristic for the pickup and delivery problem with time
windows. Transportation Science, 40(4):455–472, 2006.

[22] P. Schaus, P. Van Hentenryck, J.N. Monette, C. Coffrin,
L. Michel, and Y. Deville. Solving steel mill slab problems
with constraint-based techniques: CP, LNS, and CBLS. Con-
straints, 16(2):125–147, 2011.

[23] P. Schaus, P. Van Hentenryck, and A. Zanarini. Revisiting
the soft global cardinality constraint. Integration of AI and
OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 307–312, 2010.

[24] P. Shaw. Using constraint programming and local search
methods to solve vehicle routing problems. Principles and
Practice of Constraint Programming, pages 417–431, 1998.

[25] Ben Simon, Carleton Coffrin, and Pascal Van Hentenryck.
Randomized adaptive vehicle decomposition for large-scale
power restoration. Springer, 2012.

[26] W.J. van Hoeve. Soft global constraints, tutorial. In tutorial
given at Principles and Practice of Constraint Programming,
2009.

[27] W.J. van Hoeve. Over-Constrained Problems. Chapter from
Hybrid Optimization: The Ten Years of CPAIOR, volume 45.
Springer, 2010.

[28] W.J. van Hoeve, G. Pesant, and L.M. Rousseau. On global
warming: Flow-based soft global constraints. Journal of
Heuristics, 12(4):347–373, 2006.

[29] Voudouris. Guided local search for combinatorial optimisa-
tion problems. PhD Thesis, 1997.

[30] L.A. Wolsey. Integer Programming. Wiley Series in Discrete
Mathematics and Optimization. Wiley, 1998.

